
Why DeployHub

With an obfuscated software supply chain, IT teams struggle to know all the pieces
of software they deliver to their end-users. Without insights, its hard to confirm that
the software delivered is safe for consumption. The software supply chain includes
thousands of open-source packages, consumed across hundreds of containers that
make up the software applicaitons delivered to end-users.

DeployHub’s Continuous Security Intelligence unifies supply chain forensics to expose
all the pieces of software, making it easy to respond to threats and vulnerabilities
within hours not months. DeployHub collects supply chain and DevOps intelligence
generated by the DevOps Pipeline. DeployHub clarifies ‘logical’ application composition,
aggregates SBOM and CVE reports from lower-level dependencies, and tracks open-
source inventory across all environments.

Copyright © DeployHub, Inc. 2022

Continuous Security Intelligence
Proof of Concept

Copyright © DeployHub, Inc. 2022

Table of Contents

DeployHub POC Success Criteria 3

Installing the CI/CD CLI for Pipeline Automation 5

Steps for Running the Proof of Concept 6

Expected Results 11

2

Ortelius CLI Data Gathering using the .toml File 5

The DeployHub SaaS or On-Premise Installation Options 4

Get Help 13

Next Steps 13

Implementing DeployHub’s Continuous Security Intelligence will ensure that IT teams can deliver secure,
high-quality software at scale by exposing the following:

Supply Chain Security

DeployHub will integrate into the DevOps pipeline consuming component-level SBOMs and
producing CVE reports for each new version of a component.

DeployHub will produce application-level SBOMs and CVE reports for all logical applications
impacted by a lower-level component change.

A Supply Chain Evidence Store

DeployHub POC Success Criteria

Versioning and Component to Application Dependency Management

DeployHub will track updates and create new versions of components (containers, DB objects, File
based objects) that are being continuously pushed across the supply chain.

DeployHub will automatically create new logical application versions based on changes occurring
at the lower component dependency level.

DeployHub will show the ‘many-to-many’ relationships between components and the logical
applications that consume them.

Service Ownership and Organization

DeployHub will track component ownership and provide a simple method of knowing whom to call
when a lower-level object has an issue that impacts multiple teams.

Copyright © DeployHub, Inc. 2022

3

Component and Open-Source Usage and Inventory

DeployHub will provide the ability to search for open-source packages across all logical
applications.

The DeployHub SaaS or On-Premise Installation Options

DeployHub offers a SaaS model provding you operational management and a cost effective way to implement your
supply chain catalog. Alternatively you can install DeployHub on premise. Pricing is the same for both methods. For
terms of use see: https://www.deployhub.com/terms-of-use/

SaaS Signup

Signup for the SaaS option at https://www.deployhub.com/deployhub-team

You will recieve an email that provides you instructions for accessing the SaaS portal at
https://console.deployhub.com/

To access the SaaS portal you will be asked to enter a UserID/Password, Company and Project name. Your
UserID/Password and Company name are unique. Once you login, your Project will be a found under your
Company‘s high-level Domain.

Copyright © DeployHub, Inc. 2022

A Supply Chain Evidence Store

4

DeployHub can be installed into your own cloud environment, or onto a hosted cloud environment.
DeplyHub uses Helm to manage and perform the installation. The process includes the installation
of multiple containers. Note: You will not need the Reverse Proxy if you are installing into your own
enviornment.

The DeployHub on-premise Helm chart and instructions can be found at ArtifactHub. This is the
location for the most up to date instructions for downloading and running the DeployHub Helm chart.
(https://artifacthub.io/packages/helm/deployhub/deployhub)

On-Prem Installation

https://www.deployhub.com/terms-of-use/
https://www.deployhub.com/deployhub-team/
https://console.deployhub.com/dmadminweb/Home#dhmain
https://artifacthub.io/packages/helm/deployhub/deployhub
(https://artifacthub.io/packages/helm/deployhub/deployhub)

A Supply Chain Evidence Store

Installing the CI/CD CLI for Pipeline Automation

Regardless if you are running the SaaS version or an on-premise version, you will need to install the CI/CD Com-
mand Line Interface (CLI) to automate the gather of supply chain data from your pipeline workflows.

DeployHub integrates into your CI/CD process using the Ortelius Open-Source Command Line (CLI). The Ortel-
ius CLI gathers supply chain data based on a single pipeline workflow at the build and deploy steps. The CLI will
support any CI/CD engine, but does require Python. The build step gathers Swagger, SBOM, Readme, licenses,
Git data, Docker image, and other build output. The deploy step records when a release occurs, what was sent and
where the objects were sent to.

To complete your POC you will need to install the Ortelius CLI where your CI/CD server is running. Refer to the Or-
telius GitHub CLI Documentation (https://github.com/Ortelius/cli/blob/main/doc/dh.md) for installation instructions.

The Ortelius (https://Ortelius.io) CLI is maintained by the Ortelius Open Source Community under the governance
of the Linux Foundation’s Continuous Delivery Foundation.

Ortelius CLI Data Gathering using the .toml File

The Ortelius CLI reads from a .toml file. The .toml file contains non-derived information for each artifact that you
create at your build step. In DeployHub, an artifact is referred to as a Component. A Component is a Container,
DB Object, or file object (.jar, Lamda Function, Apex file, etc.). The .toml file will provide the ‘non-derived’ data for
the Component your are tracking in DeployHub which includes the Component name, owner, Component type, and
owner contact details. The Ortelius CLI will read the .toml file from the Git Repository associated to your pipeline.
If you are using a Mono Repository for your entire codebase, you will need a separate Component.toml file for each
Component, managed in sub-directories.

In a cloud-native, microservice architecture there are many, if not hundreds, of Components. Organizing your
Components within DeployHub is done in two ways. They are grouped based on a subject Domain and assigned
to a logical Application. Not all Components need to be assigned to an Application, but they should be stored in a
subject matter Domain so they can be easily found and reused.

 A logical Application is a collection of Components that make up a complete software systems consumed by an
end user. Applications are composed of shared Components and Application specific Components, and are a logi-
cal representation of what Components need to be deployed in order for the software system to run.

Note: Once created, your .toml file does not need to be updated unless the non-derived information changes, or

Copyright © DeployHub, Inc. 2022

5

https://github.com/Ortelius/cli/blob/main/doc/dh.md
https://github.com/Ortelius/cli/blob/main/doc/dh.md
https://Ortelius.io
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation
https://cd.foundation

Steps for Running the Proof of Concept

Copyright © DeployHub, Inc. 2022

6

Step 1 - Define Your DeployHub Pipeline Variables

The following variables should be set at the beginning of your Pipeline.

DHURL - URL to DeployHub Login
DHUSER - The ID used to log into DeployHub
DHPASS - The password used to log into DeployHub. This can encrypted based on the CI/CD solution.
DOCKERREPO -Name of your Docker Repository .For Components that are Docker Images. Not needed for
non-docker objects.
IMAGE_TAG - Tag for the Docker Image if used . For Components that are Docker Images. Not needed for
non-docker objects.

Example:

export DHURL=https://console.deployhub.com
export DHUSER=Stella99
export DHPASS=chasinghorses
export DOCKERREPO=quay.io/DeployHub/hello-world
export IMAGE_TAG=1.0.0

To automate DeployHub, you will need to add it’s data gathering to your CI/CD pipeline. The following steps will
guide you through the process of implementing the Ortelius CLI to implement your Proof of Concept. Be sure you
have installed the Ortelius CLI before you start.

Note: This POC does not include data gathering of the deployment for inventory tracking.

A Supply Chain Evidence Store

Copyright © DeployHub, Inc. 2022

7

 Step 2 - Create your Component.toml file

Cut and paste the following into a component.toml file, update ‘your’ information, and commit/push it to your Git
Repository.

Application Name and Version - optional. If not used the Component will not be associated to an Application

Application = “GLOBAL.your Application Name”
Application_Version = “your Application Version”

Define Component Name, Variant and Version - required
Name = “GLOBAL.your Component Name”
Variant = “${GIT_BRANCH}”
Version = “vyour Component Version.${BUILD_NUM}-g${SHORT_SHA}”

Key/Values to associate to the Component Version
[Attributes]
 DockerBuildDate = “${BLDDATE}”
 DockerRepo = “${DOCKERREPO}”
 DockerSha = “${DIGEST}”
 DockerTag = “${IMAGE_TAG}”
 DiscordChannel = “Your Discord Channel” or SlackChannel=”Your Slack Channel”
 ServiceOwner= “${DHUSER}”
 ServiceOwnerEmail = “Your Component Owner Email”

A Supply Chain Evidence Store

Copyright © DeployHub, Inc. 2022

8

Example:

Application Name and Version
Application = “GLOBAL.Santa Fe Software.Online Store Company.Hipster Store.Prod.helloworld app”
Application_Version = “1”

Define Component Name, Variant and Version
Name = “GLOBAL.Santa Fe Software.Online Store Company”
Variant = “${GIT_BRANCH}”
Version = “v1.0.0.${BUILD_NUM}-g${SHORT_SHA}”

Key/Values to associate to the Component Version
[Attributes]
 DockerBuildDate = “${BLDDATE}”
 DockerRepo = “${DOCKERREPO}”
 DockerSha = “${DIGEST}”
 DockerTag = “${IMAGE_TAG}”
 DiscordChannel = “ttps://discord.gg/wM4b5yEFzS”
 ServiceOwner= “${DHUSER}”
 ServiceOwnerEmail = “stella@DeployHub.io”

Note: For SaaS users, you will have a second high-level qualifier that was created as part of your sign-up.
This second high-level qualifier must be used as the start of your Application Name and Component Name.
For example: GLOBAL.Santa Fe Software.Online Store.

A Supply Chain Evidence Store

Copyright © DeployHub, Inc. 2022

9

Step 3 - Add a step in your pipeline to run Syft if you are not generating SBOMS (Optional)

DeployHub can consume any SPDX and CycloneDX formatted SBOM. If you are already generating SBOMs,
you will pass the name of the SBOM results to DeployHub is step 4 below. If you are not generating SBOMs
as part of your pipeline process, you will need to add SBOM generation to collect the lower dependency data.
Following is how to add Syft to your workflow to include the collection of SBOM data.

Syft SBOM tool (https://github.com/anchore/syft) will generate Software Bill of Material Reports for popular
coding languages and package managers, including Docker images.

The following code example scans a Docker Image to generate the SBOM. See Syft Options (https://github.
com/anchore/syft#supported-sources) to scan other objects and coding languages.

install Syft
curl -sSfL https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh -s -- -b $PWD

create the SBOM
../syft packages $DOCKERREPO:$IMAGE_TAG --scope all-layers -o cyclonedx-json > cyclonedx.json

display the SBOM
cat cyclonedx.json

https://github.com/anchore/syft
https://github.com/anchore/syft#supported-sources)

A Supply Chain Evidence Store

Step 4 - Run the Ortelius CLI to add Your Component and Create an Application

Execute the following calls to the Ortelius CLI as part of your workflow. It should be called after the build
and SBOM generation:

With CycloneDX SBOM

dh updatecomp --rsp component.toml --deppkg “cyclonedx@name of your SBOM file”

Example:
dh updatecomp --rsp component.toml --deppkg “cyclonedx@cyclonedx.json”

With SPDX SBOM

dh updatecomp --rsp component.toml --deppkg “spdx@name of your SBOM file. “

Example:
dh updatecomp --rsp component.toml --deppkg “spdx@spdx.json”

Without SBOM

dh updatecomp --rsp component.toml

Copyright © DeployHub, Inc. 2022

10

Expected Results

Application to Component Dependencies

Application Level SBOM and CVE

Copyright © DeployHub, Inc. 2022

11

Select Your Application from the ‘Application View.’ It should show you one Component as a dependency.

Review the Applicaiton SBOM and vulnerabilities. Note: CVE Results may vary depending on the time of
the scan.

Bring up your DeployHub URL and login using the DHUSER and DHPASS from Step 1.

A Supply Chain Evidence Store

Component Ownership

Supply Chain “Package” Search

Copyright © DeployHub, Inc. 2022

12

3 - Component Ownership

Go to the ‘Application View.’ Select ‘Package Search’ from the high-level menu. Enter a package
name such as ‘spring’ to identify all locations where the package is used.

Go to the ‘Component View’. You should see your Component Ownership and Detail, including its
SBOM and vulnerabilities.

Package Search

About the Author:

Next Steps
After completing these initial POC steps, you can add additional
Components to your Application, update them via your pipeline, and
view how DeployHub creates new versions of both Components and
Applications overtime. Each time a Component is updated, you will
see that a new version of all impacted “logical” Applications have
been captured, showing you what changed.

You can also add CLI integration to your deployments and begin
tracking your service inventory across all clusters, controlling drift
and proactively understanding your ‘blast radius” caused by a single
service update.

Thank you for your interest in DeployHub.

deployhub.com

Tracy Ragan, CEO and Co-Founder
DeployHub

Tracy is a DevOps and Open-
Source security evangelist with
expertise in software configuration
management, and supply chain
security. She has served on Boards
at the Open Source Security
Foundation (OpenSSF) and the
Continuous Delivery Foundation.
She was a founding member of the
Eclipse organization and served
on the board for 5 years. She is a
recognized leader in open-source
and has been published in multiple
industry publications as well as
presenting to audiences at industry
conferences. Tracy co-founded
DeployHub in 2019 to improve
security in a the software supply
chain.
Visit us at:
DeployHub.com

Help us create the best, open source supply chain
management catalog available at ortelius.io. We
believe everyone has something to offer in solving
the microservice management puzzle. We would
love to have you on board.

Copyright © DeployHub, Inc. 2022

13

Get Involved in Open-Source

Get Help

Email us at: request-info@deployhub.com

Report an Issue: github.com/DeployHubProject/DeployHub-Pro/issues

Community Discord Channel: https://discord.gg/wM4b5yEFzS

DeployHub Documentation: https://docs.deployhub.com/userguide/

https://www.deployhub.com/
https://www.deployhub.com/
http://ortelius.io
mailto: request-info@deployhub.com
https://github.com/DeployHubProject/DeployHub-Pro/issues
https://docs.deployhub.com/userguide/

